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Abstract

A multi-sample test for equality of mean directions is developed for populations having Langevin-

von Mises-Fisher distributions with a common unknown concentration. The proposed test statistic 

is a monotone transformation of the likelihood ratio. The high-concentration asymptotic null 

distribution of the test statistic is derived. In contrast to previously suggested high-concentration 

tests, the high-concentration asymptotic approximation to the null distribution of the proposed test 

statistic is also valid for large sample sizes with any fixed nonzero concentration parameter. 

Simulations of size and power show that the proposed test outperforms competing tests. An 

example with three-dimensional data from an anthropological study illustrates the practical 

application of the testing procedure.
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1. Introduction

Directional data are observed in many scientific fields and are especially common in the 

earth sciences. Directions are measured in various dimensions and can be represented as unit 

vectors or combinations of angles. The analysis of such data requires statistical methods that 

properly account for the structure of the sample space. In this article we represent directions 

as unit vectors, and thus the sample space will be the unit circle in two dimensions and the 

unit sphere in three dimensions. In general, the sample space of a d-dimensional direction is 

the unit hypersphere in ℝd denoted by d−1 = {x ∈ ℝd : ||x|| = 1}, where ||·|| is the usual 

Euclidean norm for vectors. We derive all results in this paper for the general d-dimensional 

case.

Let U be a random direction in ℝd; that is, U ∈ d−1. Two important characteristics of the 

distribution of U are its mean direction μ = E(U)/||E(U)|| and its mean resultant length ρ = ||

E(U)||, which measure the location and concentration of the distribution, respectively (here 

E(U) represents the usual componentwise expectation for vectors). The mean resultant 
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length takes values in the interval [0, 1], with larger values of ρ indicating higher 

concentration: if ρ = 1, then U is a constant; and if ρ = 0, then the mean direction is not 

defined, as when U is uniformly distributed on the sphere.

Models for directional data often employ the Langevin-von Mises-Fisher distribution, Ld(μ, 
κ), whose density with respect to the uniform distribution on the unit hypersphere is

f (u; μ, κ) = (κ /2)d /2 − 1

Γ(d /2)Id /2 − 1(κ) exp κμ⊤u , u ∈ 𝕊d − 1, (1)

where μ ∈ d−1, κ > 0, Γ denotes the gamma function, and Iν is the modified Bessel 

function of the first kind and order ν (see Abramowitz & Stegun 1970, page 374). This 

distribution is unimodal and rotationally symmetric about its mean direction μ, with mean 

resultant length (see Watson 1983, page 201)

ρ = Ad(κ) =
Id /2(κ)

Id /2 − 1(κ) . (2)

The mean resultant length ρ is a strictly increasing function of the concentration parameter 

κ, with ρ ↓ 0 as κ ↓ 0 and ρ ↑ 1 as κ ↑ ∞. Thus, larger values of κ correspond to more 

concentrated distributions, with κ = 0 corresponding to the uniform distribution on the 

sphere and κ = ∞ corresponding to the point mass at μ.

Given several independent random samples of directions of equal concentration, one often 

wishes to test for equality of the corresponding population mean directions, the directional 

analogue of the classical one-way analysis of variance problem. Let Ui1, . . . , Uini, i = 

1, . . . , k, be k independent random samples of sizes ni from Ld(μi, κ), i = 1, . . . , k, where μi 

is the mean direction of the ith sample and κ is the common unknown concentration. We 

wish to test the null hypothesis that the k mean directions are equal against the alternative 

that at least two mean directions differ; that is, we wish to test

H0: μ1 = ⋯ = μk versus Ha: μi ≠ μ j for at least one pair (i, j) . (3)

Before discussing how this can be accomplished with existing tests, we introduce some 

additional definitions and notation. For the ith sample, the resultant vector is the sum 

∑ j = 1
ni Ui j and the sample mean vector is the average Ui = ni

−1∑ j = 1
ni Ui j. The resultant length 

is denoted by Ri = ‖∑ j = 1
ni Ui j‖ and the sample mean resultant length by Ri = ni

−1Ri. The 

sample mean direction is then defined as the unit vector Ri
−1Ui. For the combined sample 
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with a total sample size n = n1 + ··· + nk, we will denote the sample mean vector, resultant 

length, and sample mean resultant length by Ū, R, and R̄, respectively.

Watson & Williams (1956) proposed a high-concentration F-test of (3), applicable to any 

number of samples in any dimension, generalizing a test previously introduced by Watson 

(1956) for the spherical (3-dimensional) case. The Watson & Williams test is based on a 

decomposition of the total variation represented by 2κ(n − R) into within-sample and 

between-sample components, as expressed by the formula

2κ (n − R) = 2κ n − ∑
i = 1

k
Ri + 2κ ∑

i = 1

k
Ri − R .

Following Watson (1956), Watson & Williams noted that, under H0,

2κ
n − ∑i = 1

k Ri

∑i = 1
k Ri − R

→d
χ(n − k)(d − 1)

2

χ(k − 1)(d − 1)
2 as κ ∞ , (4)

where χ(n − k)(d − 1)
2  and χ(k − 1)(d − 1)

2  are independent chi-squared distributed random 

variables with (n − k)(d − 1) and (k − 1)(d − 1) degrees of freedom, respectively, and →d

denotes convergence in distribution. The test statistic suggested by Watson & Williams,

W =
(n − k) ∑i = 1

k Ri − R

(k − 1) n − ∑i = 1
k Ri

, (5)

is the ratio of the between-sample and within-sample variabilities, divided by the appropriate 

degrees of freedom. The null hypothesis of equal mean directions is rejected for large values 

of W, whose high-concentration asymptotic distribution under the null hypothesis is F with 

(k − 1)(d − 1) numerator and (n − k)(d − 1) denominator degrees of freedom.

In the circular (2-dimensional) case, Stephens (1972) incorporated a multiplicative factor 

into the Watson & Williams statistic (5) in order to improve the F-approximation. Mardia & 

Jupp (2000, page 191) suggested a similar correction for the spherical (3-dimensional) case, 

and Stephens (1992) provided further details for the general d-dimensional case.

Watson & Williams (1956) also developed exact tests of (3) based on the conditional 

distribution of R1 + ··· + Rk given R, which does not depend on the common unknown κ. 

Intuitively, if the value of R1 + ··· + Rk is large relative to R, then a departure from the null 

hypothesis of equal mean directions is indicated (see Figure 7.1 of Stephens 1992). In the 

circular case with two samples, Watson & Williams derived the joint density of R1 and R2 
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given R, and Stephens (1972) provided tables with critical values for the conditional test 

based on the test statistic R1 + R2 given R. For the two-sample problem in three dimensions, 

Stephens (1969) derived the conditional density of R1 and R2 given R using the joint 

distribution of R1, R2, and R derived earlier by Fisher (1953), and provided tables with 

critical values for the significance test under certain restrictions. As far as we are aware, 

critical values have not been calculated for higher dimensions or for comparing more than 

two groups (also see Mardia & Jupp 2000, page 222).

Harrison, Kanji & Gadsden (1986) suggested a multi-sample test of (3) for circular data, 

which was later generalized for any dimension in Mardia & Jupp (2000, page 225). This test 

is based on the ANOVA decomposition

∑
i = 1

k
∑

j = 1

ni
‖Ui j − U‖2 = ∑

i = 1

k
∑

j = 1

ni
‖Ui j − Ui‖

2 + ∑
i = 1

k
ni‖Ui − U‖2,

which can be rewritten as

n (1 − R2) = n − ∑
i = 1

k
niRi

2 + ∑
i = 1

k
niRi

2 − nR2 ,

where the terms represent, respectively, the total variation, variation within samples and 

variation between samples. This suggests the test statistic

A =
(n − k) ∑i = 1

k niRi
2 − nR2

(k − 1) n − ∑i = 1
k niRi

2 , (6)

which compares between-sample and within-sample variability. The null hypothesis of equal 

mean directions is rejected for large values of A, which is referred to its high-concentration 

null distribution, which is again F with (k − 1)(d − 1) and (n − k)(d − 1) degrees of freedom.

Of course the hypotheses in (3) can also be tested using the likelihood-ratio test statistic (see 

Mardia & Jupp 2000, page 224)

G = 2 κa ∑
i = 1

k
Ri − κ0R + nad(κa) − nad(κ0) , (7)

where κ̂0 and κ̂a are the maximum likelihood estimators (MLEs) of κ under the null and 

alternative hypotheses, respectively, and ad(κ) = log(κd/2−1/Id/2−1(κ)). The null hypothesis is 

rejected for large values of G, whose large-sample asymptotic null distribution is chi-
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squared with (k − 1)(d − 1) degrees of freedom. For small values of κ, Mardia & Jupp (2000, 

page 225) suggested incorporating a multiplicative factor into G to improve the chi-squared 

approximation. In the circular case, Upton (1976) retained the chi-squared reference 

distribution, but used an approximation of the likelihood-ratio test statistic obtained by 

applying the approximations and substitutions described in Upton (1973). Note however that 

Upton’s (1976) primary motivation was to develop a test that could be calculated easily, and 

specifically, one that did not require evaluation of Bessel functions, considerations which are 

not particularly relevant in today’s computing environment.

In this paper we present an improved version of the multi-sample likelihood-ratio test for 

equality of mean directions in the general d-dimensional case, assuming a common, 

unknown concentration. Our procedure is based on a simple, monotone transformation of the 

likelihood-ratio statistic which can be applied with any number of samples in any dimension. 

We show that, under the null hypothesis, the high-concentration asymptotic distribution of 

our modified likelihood-ratio statistic is F with (k − 1)(d − 1) and (n − k)(d − 1) degrees of 

freedom. We demonstrate by simulation that the null distribution of the test statistic is well 

approximated by this F distribution even with small sample sizes and moderate 

concentrations. Our simulations of size and power show that our test is superior to 

competing tests. We also illustrate the practical application of our test by analyzing three-

dimensional directions of primate vertebral facets.

2. The High-Concentration Likelihood-Ratio Test

Let Uc = (U11, . . . , U1n1, . . . , Uk1, . . . , Uknk) denote the d × n matrix of the combined k 
independent random samples of sizes ni from Ld(μi, κ), i = 1, . . . , k. The likelihood 

function, using (1), is

L (μ1, …, μk, κ; Uc) = (κ /2)d /2 − 1
Γ(d /2)Id /2 − 1(κ)

n
exp κ ∑

i = 1

k
∑

j = 1

ni
μi

⊤Ui j .

Under the null hypothesis in (3), the MLEs of the common mean direction and the common 

concentration κ are μ̂
0 = Ū/R̄ and κ0 = Ad

−1(R) respectively (see Mardia & Jupp 2000, page 

224), where Ad
−1( · ) denotes the inverse of the function Ad(·) defined in (2). Under the 

alternative hypothesis, the MLEs of μi and κ are μ̂
ai = Ūi/R̄

i and κa = Ad
−1(R∼), where 

R∼ = n−1∑i = 1
k Ri. Therefore, the likelihood ratio is

Λ =
L (μ0, κ0; Uc)

L (μa1, …, μak, κa; Uc)
=

κ0
d /2 − 1/Id /2 − 1(κ0) exp (κ0Ad(κ0))

κa
d /2 − 1/Id /2 − 1(κa) exp (κaAd(κa))

n

. (8)

Rumcheva and Presnell Page 5

Aust N Z J Stat. Author manuscript; available in PMC 2018 April 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



For large κ, the Ld(μ, κ) distribution can be approximated by a spherical normal distribution 

in the hyperplane tangent to d−1 at μ (see Mardia & Jupp 2000, page 172). For testing (3), 

this suggests the following power transformation of (8), which is analogous to the 

transformation relating the likelihood ratio statistic and the usual “ratio of sums of squares” 

F-test statistic in a classical one-way analysis of variance (see Scheffe 1961, page 36):

P = n − k
k − 1 Λ−2/(n(d − 1)) − 1 . (9)

We will show that the high-concentration asymptotic null distribution of P is F with (k −1)(d 
− 1) and (n − k)(d − 1) degrees of freedom. Of course, for fixed positive concentration, the 

null distribution of the likelihood-ratio test statistic G = −2 logΛ in (7) is approximately 

χ(k − 1)(d − 1)
2  when the group sizes ni are large. Using the Maclaurin series expansion of the 

exponential function, we see that under the null hypothesis, for large n,

P = n − k
k − 1 exp G

n(d − 1) − 1 = G
(k − 1)(d − 1) + Op(n−1),

and therefore P is approximately distributed as χ(k − 1)(d − 1)
2  scaled by ((k − 1)(d − 1))−1. 

This scaled chi-squared distribution is also the large-n limit of the F reference distribution 

suggested by the high-concentration theory, and therefore the F approximation is applicable 

in both high-concentration and large-sample settings. Note that this is not true for the tests 

based on W in (5) and A in (6).

In the remainder of this section, we will be concerned with establishing the high-

concentration null distribution of P. We adopt the standard notation O and Op for quantities 

that are bounded and bounded in probability, respectively. For brevity, we will omit κ → ∞ 

in expressions involving →d , O or Op, taking this as implied. We will also take it as implied 

that statements involving Op hold for the null hypothesis.

For large κ, the modified Bessel function Iν (κ) can be expanded as (see Abramowitz & 

Stegun 1970, 9.7.1)

Iν(κ) = exp (κ)
(2πκ)1/2 1 − 4ν2 − 1

8κ + (4ν2 − 1)(4ν2 − 9)
128κ2 + O(κ−3) . (10)

Using this, Schou (1978) determined that the mean resultant length has expansion

Ad(κ) = 1 − d − 1
2κ + (d − 1)(d − 3)

8κ2 + O(κ−3) . (11)
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Letting y = y(κ) = 1 − Ad(κ), or equivalently, κ = Ad
−1(1 − y), from (11) it follows that, as y ↓ 

0,

1
κ = 2

d − 1 y + (d − 3)
(d − 1)2 y2 + O(y3) . (12)

We will apply this expansion to each of the random variables κ̂0 and κ̂a.

Under H0, from (4), it follows that

2κn 1 − R →d χ(n − 1)(d − 1)
2 ,

and thus

1 − R = Op(κ−1)
1 − R∼ = Op(κ−1) .

(13)

Since the MLEs of κ under the null and alternative hypotheses are κ0 = Ad
−1(R) and 

κa = Ad
−1(R∼) respectively, we separately take y = 1 − R̄ and y = 1 − R̃ in the asymptotic 

expansion (12) for κ−1, and use (13), to obtain

1
κ0

= 2(1 − R)
d − 1 + Op(κ−2)

1
κa

= 2(1 − R∼)
d − 1 + Op(κ−2) .

(14)

Now, from the asymptotic expansions for I(d−2)/2(κ) and Ad(κ) in (10) and (11), and the 

Maclaurin series expansions of the exponential function exp(x) and geometric series (1 − x)
−1, we have

κd /2 − 1
Id /2 − 1(κ) exp (κAd(κ)) = κ(d − 1)/2 (2π)1/2 exp ( − κ (1 − Ad(κ))) 1 + O(κ−1) −1

= κ(d − 1)/2 (2π)1/2 exp −2−1(d − 1) + O(κ−1) 1 + O(κ−1) −1

= κ(d − 1)/2 (2π)1/2 exp −2−1(d − 1) 1 + O(κ−1) .
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Substituting this expression in (8), and using the expansions in (14) for κ0
−1 and κa

−1, yields

Λ =
1 − R∼ + Op(κ−2)
1 − R + Op(κ−2)

(d − 1)/2 1 + Op(κ−1)
1 + Op(κ−1)

n

. (15)

Now, using (15) in (9), together with the binomial series for (1 + x)a, a ∈ ℝ1, and the result 

(1 − R̃)−1 = Op(κ) implied by (4), we have

P = n − k
k − 1

1 − R + Op(κ−2)

(1 − R∼)(1 + Op(κ−1))
1 + Op(κ−1) − 1

= n − k
k − 1

1 − R
(1 − R∼)

+ Op(κ)Op(κ−2) 1 + Op(κ−1) − 1

= n − k
k − 1

R∼ − R
1 − R∼

+ Op(κ−1) = W + Op(κ−1),

where W is the Watson & Williams test statistic (5). Therefore, under the null hypothesis, 

the test statistic P is equal to W up to a first-order approximation, and from this it follows 

that the high-concentration asymptotic null distribution of P is F with (k − 1)(d − 1) and (n − 

k)(d − 1) degrees of freedom, as stated earlier.

Using additional terms in the asymptotic expansions, one can show that

P = W + n − k
k − 1

1 − (d − 2)2

2(d − 1)2
(R∼ − R)(1 − R)

(1 − R∼)
+ Op(κ−2) .

In the second term on the right-hand side of this expression, the factor (R̃ − R̄)(1 − R̄)/(1 − 

R̃) is of order κ−1 in probability and is always non-negative. The factor (1 − (d − 2)2)/(2(d 
− 1)2) is zero for d = 3, and thus, as κ→ ∞, the difference between the test statistics P and 

W diminishes faster for d = 3 than for other dimensions. Also, notice that for d = 2, this 

factor is positive (0.5), and therefore the test statistic P will be greater than W for κ 
sufficiently large; for d ≥ 4, this coefficient is negative, and thus P will be smaller than W for 

large values of κ. These facts are reflected in the simulations in the next section.

It can also be shown, using the equality 1 − R̄2 = 2(1 − R̄)(1 − (1 − R̄)/2), that A = W + Op(κ
−1). However, the simulation results of the next section will demonstrate that the test based 

on P outperforms the tests based on W, A, and G, as the null distribution of P is 

approximated better by the F distribution in both the high-concentration and large-sample 

settings.
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3. Simulations and Comparisons

Simulations of size and power were carried out for the proposed test with statistic P, and for 

the tests based on the statistics W, G, and A described in the Introduction. We also included 

the modified version of W given by the formula M = (1 + 3/(8κ̂0))W for d = 2 (Stephens 

1972), and M = (1 − 1/(5κ0
2))W for d = 3 (Mardia & Jupp 2000, page 191), where κ̂0 is the 

MLE of κ under H0. Since all tests under consideration are approximate, we first examine 

how well each of them maintains its nominal size (following Upton 1976, we refer to this as 

the accuracy of the test). We then compare the powers of the tests. Upton’s (1976) test for 

the circular case was not considered in our simulations, because simulations in Upton’s 

(1976) paper showed that this test is similar in power but slightly less accurate compared to 

Stephens’s (1972) test using the statistic M.

The performance of the tests was investigated for dimensions d = 2 and d = 3 with common 

mean resultant lengths ρ = 0.10, 0.20, 0.30, 0.40, 0.45, 0.50, 0.60, 0.75, 0.85, 0.95, and 

sample size combinations (n1, n2) = (10, 10), (10, 20), (20, 20), (20, 40), (40, 40) for the 

two-sample problem (k = 2) and (n1, n2, n3) = (10, 10, 10), (10, 20, 20), (20, 20, 40), (20, 30, 
40), (40, 40, 40) for the three-sample problem (k = 3). Limited simulations were also 

performed for dimensions d = 4, d = 10, and d = 100. We focus here on simulation results 

for values of ρ ≥ 0.45, but note that for ρ < 0.45, only the test based on P maintained a size 

reasonably close to its nominal size.

The generation of a random direction from the Langevin-von Mises-Fisher distribution can 

be accomplished with the procedures described in Best & Fisher (1979) for d = 2 and Fisher, 

Lewis & Willcox (1981) for d = 3. We used R (R Core Team 2015) for all computations. The 

R package circular (Agostinelli & Lund 2013) was used to generate random directions for 

the two-dimensional case, and the R package movMF (Hornik & Grün 2014) for the cases d 
= 4, d = 10, and d = 100.

All tests considered are invariant to rotation of the circle/sphere, so in all cases one of the 

population mean directions can be set to the angle 0 for d = 2, and to the direction with 

colatitude and longitude both equal to 0 for d = 3; we will refer to these as the reference 

directions. In the simulations for power, for k = 2, the second population mean direction was 

chosen to be separated from the reference by the angle δ = 5, 10, 15, 20, 25, 30, 35, 40 

degrees. For k = 3, two scenarios were used: in the first, two groups shared a common 

population mean direction defined as the reference, and the third group had a mean direction 

δ degrees away; in the second, the three groups had coplanar mean directions, two of which 

formed an angle of 2δ degrees and the third was the bisector of this angle. All test statistics 

were simulated 100 000 times for each combination of sample size, mean resultant length ρ, 

and separation angle δ.

Under the null hypotheses, p-values should be uniformly distributed on the interval (0, 1). In 

Figures 1 and 2, Q-Q plots are shown comparing the p-values obtained by simulation under 

the null hypothesis to the target uniform distribution for d = 2, k = 2, (n1, n2) = (10, 10), and 

for d = 3, k = 3, (n1, n2, n3) = (20, 30, 40). In these plots, the ordered observed p-values 

(vertical axes) obtained under the null hypothesis are plotted against the corresponding 
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quantiles (horizontal axes) of the uniform distribution. The axes are truncated to 0 to 0.10 to 

provide more detail in the range of most interest in hypothesis testing. A test maintains its 

nominal size if the simulated curve coincides with the (dashed) diagonal line; the test is 

conservative if the curve lies above the diagonal line, and anti-conservative if the curve lies 

below the diagonal line.

Table 1 provides further details by giving the actual sizes of the tests for nominal sizes α = 

0.01, 0.05, 0.10. Tables 2 and 3 compare the powers of the tests at nominal size α = 0.05 as 

the mean resultant length ρ increases from 0.45 to 0.85. Similar figures and tables for the 

other scenarios considered are provided in the supplementary materials.

Based on these results, we make the following observations:

• With the exception of the standard likelihood-ratio test based on G (using the 

chi-squared approximation), the accuracy of each test improves with increasing 

ρ. However, the modified likelihood-ratio test based on P is consistently the best 

at maintaining its size, especially for values of ρ less than 0.75.

• As expected from the discussion at the end of Section 2, when ρ ≥ 0.45, the 

Watson & Williams test based on W is conservative for d = 2, but anti-

conservative for d ≥ 3. When ρ < 0.45, this test changes to being anti-

conservative for d = 2, but remains anti-conservative for d ≥ 3.

• The test based on M is usually better than W, but our simulations show that this 

is not always the case. In particular, M seems to be less accurate than W in the 

two-dimensional case when ρ ≤ 0.50.

• For d = 2 and d = 3, the test based on A is conservative even for very large values 

of ρ, and its power never exceeded the power of any of the other tests when ρ ≥ 

0.45 (see supplementary figures and tables).

• The accuracy of the likelihood-ratio test statistic G is poor, although it does 

improve with increasing sample size. Among the other tests, only the accuracy of 

the modified likelihood-ratio test based on P seems to improve with increasing 

sample size, at least over the range of sample sizes considered here (see 

supplementary figures and tables).

• As expected (see Tables 2 and 3), the power of each test increases with ρ, and, 

not surprisingly, the anti-conservative tests based on M and G (and on W when d 
= 3) have an artificial power advantage which is reflected in these tables. 

However, this advantage appears to be entirely explained by the discrepancy in 

the actual size of the tests. For example, if we use our simulation results to 

calibrate the tests based on P and W to have equal size, then the powers of the 

tests become essentially equal (see Tables 5 and 6 in the supplementary 

materials).

• Finally, the test based on P appears to maintain its advantage over the tests based 

on W, M, and G as the dimension increases to d = 4, d = 10, and d = 100. For d = 

4 and d = 10, the test with P again seems to perform better than the test with A. 

For d = 100, P and A appear to maintain their nominal size even for 
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concentrations down to ρ = 0.10, and they also seem to have similar power. Note 

that for d = 4, d = 10 and d = 100, the multiplicative factor in M was calculated 

using only the first three terms of the expansion provided for the correction in 

Stephens (1992); the performance of M may improve if more terms of this 

expansion are used.

In conclusion, these simulation results show that the test based on P maintains its size and 

power across the range of concentrations usually encountered, much better than any of the 

other tests considered. This test does not require any special adjustments that depend on 

dimension or (estimated) concentration, nor does it require the use of the bootstrap or other 

computationally intensive techniques. There seems to be no reason that this version of the 

likelihood-ratio test should not be adopted in preference to the other tests in this comparison.

4. Orientations of Primate Vertebral Facets

Anthropologists have long been interested in the relationship between form and function. 

One specific area of research is the relationship between skeletal form and locomotion, 

including in particular the spine morphology and locomotor forces transmitted in the lumbar 

vertebrae in orthograde primates (see Johnson & Shapiro 1998).

In this example we consider the three-dimensional orientation of the last lumbar inferior 

facets in three species of primates: chimpanzees, gorillas, and humans. The data were 

collected at the Division of Anthropology and the Division of Vertebrate Zoology at the 

American Museum of Natural History in New York City, by Dorion A. Keifer, as part of 

Keifer’s (2005) master’s thesis research conducted at the Department of Anthropology at the 

University of Florida. Details on the methods and procedures for specimen selection and for 

measuring different vertebral elements can be found in Keifer’s (2005) thesis.

To illustrate the application of the proposed testing procedure, we consider the normal vector 

to the last lumbar right inferior facet, as this vector is considered important for the 

development of biomechanical models on the force direction in the facet. Table 4 contains 

the three-dimensional directions of the normal vectors (rounded to three decimal places) for 

the three samples of primates, with the sample mean directions and sample mean resultant 

lengths provided in the last two rows. One outlying observation in the humans sample and 

two in the gorillas sample were excluded from the original data set. Note that our numerical 

results were obtained using the original (full precision) data. Figure 3 shows the Lambert’s 

azimuthal equal-area projection (see Fisher, Lewis & Embleton 1987) of the data onto the 

plane tangent to the sphere at the point of the overall sample mean direction of the three 

samples combined, after applying the rotation (i) of Fisher & Best (1984).

To test the goodness-of-fit of the Langevin-von Mises-Fisher three-dimensional distribution 

to the data, we performed the tests on colatitude, uniformity, and normality described in 

Fisher & Best (1984) for each of the three samples, and we found no evidence against the 

null hypothesis of Langevin distribution at the 0.05 level. Before testing for equality of the 

mean directions, Bartlett’s test of homogeneity was performed to verify the assumption of 

equal concentrations (see Mardia & Jupp 2000, page 226). The test was expected to perform 

satisfactorily when R̄ ≥ 0.67, which is the case in this example as R̄ = 0.97. The data in the 
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three samples are highly concentrated, and the p-value from Bartlett’s test is 0.127 

indicating no evidence of unequal concentrations. We then tested for equality of the three 

mean directions using the test statistic P and found a statistically significant difference (p-

value < 0.0001). Pairwise tests on the mean directions were then performed using P, finding 

statistically significant differences for all three pairs of primate species at the 0.05 level after 

accounting for the multiple testing with Holm’s (1979) simultaneous testing procedure: 

Human & Gorilla (p-value < 0.0001), Human & Chimpanzee (p-value < 0.0001), and 

Gorilla & Chimpanzee (p-value = 0.008).

5. Conclusion

In this paper we propose an improved version of the multi-sample likelihood-ratio test of 

equality of mean directions for populations having Langevin-von Mises-Fisher distributions 

with a common unknown concentration in the general d-dimensional case. Our test statistic 

is a monotone transformation of the likelihood ratio. We show that the high-concentration 

asymptotic null distribution of the test statistic is the F distribution. We also demonstrate that 

the F approximation to the null distribution is applicable in the large-sample setting. Our 

simulations of size and power show that the proposed test outperforms competing tests. The 

proposed test performs well even with small sample sizes and moderate concentrations 

across all dimensions considered. Further examination of the behavior of the test under 

departures from the assumptions of Langevin distribution or equal concentrations would 

provide beneficial information on its robustness. Additional simulations on the size and 

power of the test in dimensions higher than three would extend its practical applicability.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Size of the tests with statistics P, M, W, G, and A (100 000 simulated values each), 

examined by plotting the ordered p-values (vertical axis) versus uniform quantiles 

(horizontal axis), for d = 2, k = 2, (n1, n2) = (10, 10), and ρ = 0.45, 0.60, 0.75, 0.85.
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Figure 2. 
Size of the tests with statistics P, M, W, G, and A (100 000 simulated values each), 

examined by plotting the ordered p-values (vertical axis) versus uniform quantiles 

(horizontal axis), for d = 3, k = 3, (n1, n2, n3) = (20, 30, 40), and ρ = 0.45, 0.60, 0.75, 0.85.
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Figure 3. 
Three-dimensional directions of the normal vectors to the last lumbar right inferior facets in 

the samples of humans (circles), gorillas (asterisks), and chimpanzees (triangles) (Table 4), 

projected onto the plane tangent to the sphere at the point of the combined sample mean 

direction using Lambert’s azimuthal equal-area projection. The angles θ and ϕ denote the 

colatitude and longitude of the direction respectively, after applying the rotation (i) of Fisher 

& Best (1984).
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